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SUMMARY 

Three adaptive finite element methods based on  equidistribution, elliptic grid generation and hybrid 
techniques are used to  study a system of reaction4iffusion equations. It is shown that these techniques must 
employ sub-equidistributing meshes in order to avoid ill-conditioned matrices and ensure the convergence of 
the Newton method. It is also shown that elliptic grid generation methods require much longer computer 
times than hybrid and static rezoning procedures. The paper also includes characteristic, Petrov-Galerkin 
and flux-corrected transport algorithms which are used to study a linear convection-reaction4iffusion 
equation that has a n  analytical solution. The flux-corrected transport technique yields monotonic solutions 
in good agreement with the analytical solution, whereas the Petrov-Galerkin method with quadratic 
upstream-weighted functions results in very diffused temperature profiles. The characteristic finite element 
method which uses a Lagrangian-Eulerian formulation overpredicts the flame front location and exhibits 
overshoots and undershoots near the temperature discontinuity. These overshoots and undershoots are due 
to  the interpolation of the results of the Lagrangian operator onto the fixed Eulerian grid used to solve the 
reaction-diffusion operator, and indicate that characteristic finite element methods are not able t o  eliminate 
numerical diffusion entirely. 
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INTRODUCTION 

The objective of this paper is twofold. First, three adaptive finite element methods are used to 
study a system of one-dimensional reaction4iffusion equations. The adaptive finite elements 
employed in this study are based on a variational formulation' which accounts for grid 
smoothness and grid equidistribution by means of two parameters. It is shown that if the 
smoothness parameter is set to zero, the minimization of the functional yields an equidistributing 
mesh, whereas if the two parameters are different from zero, the minimization yields a non-linear 
elliptic equation for the grid motion. A hybrid technique which combines elliptic grid generation 
and mesh equidistribution techniques is also presented. 

The second objective of this paper is to assess the accuracy of characteristic, Petrov-Galerkin 
and flux-corrected transport finite element methods in the solution of a one-dimensional linear 
convection-reactiondiffusion equation which has an analytical solution. 

Adaptive grid generation techniques may be classified into three broad categories: static 
rezoning, moving and hybrid methods2 In static rezoning methods the grid nodes may remain 
fixed for intervals of time, whereas the grid motion and the integration of the partial differential 
equations are fully coupled in moving or dynamic methods. Hybrid techniques are intermediate 
between static rezoning and moving  method^.^ 
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The grid adaptation in static rezoning techniques may be based on the equidistribution of a 
positive weight function, finite element residuals, solution gradients, a priori and a posteriori error 
estimates, variational formulations, Moving or dynamic adaptive techniques may be 
based on mesh equidistribution,6 transformation' and variational's8*9 principles, moving finite 
element methods with and without error control,". l1  solution of partial differential equations, 
e t ~ . ~ . ~ .  

In this paper the variational formulation of Brackbill and Saltzman' is used to study a system of 
two reactiondiffusion equations which model one-dimensional flame propagation. l2  It is shown 
that such a variational formulation results in equidistribution and elliptic grid generation 
techniques by appropriate choices of the parameters which govern the grid smoothness and the 
grid equidistribution. Such a formulation has been previously used by the author to study the 
spherical ignition of homogeneous gaseous mixtures' and is presented in the next section. 

The third section of this paper deals with the solution of a linear convection-reaction-diffusion 
equation which has an analytical solution and which is solved by means of Petrov-Galerkin, 
characteristic and flux-corrected transport finite element methods for finite and infinite Peclet 
numbers. 

Petrov-Galerkin finite element methods use different subspaces for the trial and test functions 
and lead to upwind finite element approximations with non-symmetric or non-centred Galerkin 
 equation^.'^ The test or weight functions bias the upstream influence relative to the flow direction 
in convection-dominated flows. The weight functions generally contain a parameter which must 
be chosen so as to optimize the numerical results. With upstream-weighted test functions the 
solution of convection-dominated flows does not exhibit oscillations, but is smoothed out because 
of the numerical dissipation terms introduced by upwinding. Numerical damping is particularly 
severe if the flow has steep gradients. Christie et a1." and Hughes16 have determined the 
conditions under which the solution of the Petrov-Galerkin finite element methods coincides with 
the exact one for simple convection4iffusion equations, and the conditions for which the solution 
of the finite element method is fourth-order accurate in space. Hughes17 has recently presented a 
review of streamline upwind Petrov-Galerkin methods (SUPG), while Ramos2 has reviewed 
different upwinding strategies for convectiondiffusion-reaction equations. 

Characteristic finite element techniques use operator-splitting algorithms to reduce a system of 
convectiondiffusion-reaction equations to a sequence of convection and reactiondiffusion 
operators." The convection operator can be solved by means of the method of characteristics, i.e. 
using a Lagrangian approach which eliminates the numerical dissipation that would be 
introduced if the convection operator were solved in a fixed grid. The solution of the convection 
operator can then be interpolated onto a fixed Eulerian grid where the reaction-diffusion operator 
is solved. Since both the method of characteristics and fixed grids are employed in the calculations, 
characteristic finite element methods may be also referred to as Lagrangian-Eulerian formula- 
tions. 

Since the method of characteristics is used to solve the convection operator, the numerical 
dissipation which will occur in convection-dominated flows when fixed grids are used to solve that 
operator is eliminated. However, some numerical diffusion errors are still present owing to the 
interpolation of the results of the method of characteristics onto a fixed grid. It will be shown in 
this paper that such interpolation may result in overshoots and undershoots when steep flow 
gradients exist. 

A third method for reducing numerical dissipation errors in convection-dominated flows is the 
flux-corrected transport (FCT) algorithm. 19, *O This algorithm is monotone and preserves 
positivity, and has been applied to the Euler and Navier-Stokes equations.21,22 
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In this paper an FCT finite element method is used to solve a linear convec- 
tionaiffusion-reaction equation, and its results are compared with the analytical solution and 
with those of characteristic and Petrov-Galerkin finite element methods for several values of the 
Peclet number. 

REACTION-DIFFUSION EQUATIONS 

Consider the Dwyer-Sanders model of flame propagation for homogeneous gaseous mixtures 
confined between two infinite parallel planar walls. The equations governing the model can be 
written as" 

Y, = Y,, - YR(T), TI = T,, + YR(T), O < x < l ,  t>O,  ( 1 )  

Y(x, 0)  = 1 ,  T(x, 0)  = 0.2, (2) 

where 

R ( T )  = 3.52 x exp( -4/T), ( 5 )  
0.2 + t/00002, 0 < t < 0.0002, 

t 2 0.0002. f (0 = { 1.2, 

All the variables are dimensionless: t is time, x is the spatial co-ordinate, Y is the species mass 
fraction, T is the temperature, the subscripts denote differentiation and R is the reaction rate. 

Equation (1) can be written as 

u, = F(U), (7) 

u = (Y, T)T, F = [Y,, - YR(T), T,, + YR(T)IT; (8) 

where 

the superscript T denotes transpose. 
Equation (7) was solved by means of a Galerkin finite element method which uses linear basis 

 function^'^ and by means of three adaptive numerical methods based on the variational 
formulation proposed by Brackbill and Saltzman' as follows. 

We first introduce the mapping 

(x, t )  -+ ( r l ,  4, (9) 
where 

7 = t ,  rl = [ W(Y, t)dY J; W(Y, t )  dy; (10) 

w(x, t) is a weighting function, which in our case was taken as the arc length of the temperature 
profile, i.e. 

w = [ 1 + ( 3 1 " '  
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We now introduce the functional' 

I = & 1: (2)' dx + j' W(X, t )Jdx,  
0 

where %s and are two parameters and 

is the Jacobian of the transformation defined by equation (9). 

equidistribution respectively. 
The first and second integrals in equation (12) are related to grid smoothness and grid 

Minimization of equation (12) yields the Euler-Lagrange equation 

&Xq9 + %,x,3 (WXV9 + x,'w,) = 0, (14) 

which is a non-linear elliptic equation whose solution yields x(q, t). Note that if %,=O, equation 
(14) yields x,,= C(r) ,  i.e. the grid spacing in the x-co-ordinate is proportional to that in the q-co- 
ordinate. However, if %s = 0, equation (14) can be integrated to yield the equidistribution equation 

wxs = C(r),  (15) 

where C(T)  denotes a function of T. 
For an equally spaced grid in the q-co-ordinate, equation (1 5) implies that the grid spacing in 

the x-co-ordinate is inversely proportional to w, i.e. the grid points will be concentrated where w is 
largest; that is, where the temperature gradient is largest. 

In the next subsections, three adaptive techniques based on equation (14) are described. 

Equidistribution method 

In this method the grid is distributed according to equation (1 5), i.e. As = 0, which can be used to 
calculate the mesh spacing in the x-co-ordinate as follows. Assume that the mesh is equally spaced 
in the q-co-ordinate with NP = NE + 1 grid points and NE finite elements. Then equation (15) can 
be written as 

j -  1 
-= NE r w d x / j l w d x ,  i=2 ,3 , .  . . , N E ,  

with x1 =O and xNp= 1. 
Equation (7) was solved by means of a linear Galerkin finite element method, and its solution 

was used to calculate the weighting function w (equation (1 1)). Once w is known, the location xi of 
the jth grid point can be calculated from equation (1 6). However, the equidistribution technique 
defined by equation (15) does not ensure grid smoothness and, as a consequence, the sizes of 
adjacent finite elements may be quite different. This may result in numerical difficulties, e.g. slow 
convergence and ill-conditioned matrices, and numerical errors when solving the finite element 
discretization of equation (7). 

In order to ensure grid smoothness and avoid adjacent finite elements of quite different sizes, the 
following sub-equidistribution method was employed:23 

k - '  6 h i + , / h i  6 k ,  (17) 
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where k3 1 and the element size or grid spacing is 

Equation (17) imposes lower and upper bounds on the ratio of the sizes of adjacent elements. 
Equations (7), (16) and (17) were used in the present study as follows. The finite element 

discretization of equation (7) was first obtained and used to calculate x j  from equation (16). When 
equation (17) was violated, grid points were added/deleted and the new grid was used to solve 
equation (16). This procedure was repeated as many times as necessary at each time step, and may 
be referred to as a static rezoning technique because the grid addition/deletion is effected once the 
solution is known. 

In the next subsection a moving technique based on equation (14) is described. 

Elliptic grid generation 

Equation (14) determines the location of the grid points in the x-co-ordinate. This equation is 
elliptic, corresponds to a two-point non-linear boundary value problem with x(0, T )  = O  and x(1, T )  

= 1, and can be solved at each time step coupled with the solution of equation (7) which can be 
written as 

Ur = F(U) + UXx,, (19) 

where the grid velocity x, can be calculated from equation (10) as 

and, qt can be calculated from equation (10). 

linear Galerkin finite element method for both x and U, i.e. 
The finite element discretizations of equation (14) with i,=i,= 1 and of equation (19) use the 

where 5 is the local co-ordinate in each element, i s .  5 = N E ( u  - qi-  ) for q i  - 6 5 6 q i ,  4 is a linear 
basis function and Ui and x i  denote the nodal amplitudes of the finite element approximation to U 
and x, respectively. 

The Galerkin finite element discretizations of equations (14) and (19) yield a system of algebraic 
equations for xi and a system of ordinary differential equations for Ui; the first-order time 
derivatives were discretized by means of first-order accurate backward difference formulae and the 
resulting system of non-linear algebraic equations was solved by means of a damped Newton 
method. 

However, the finite element discretizations of equations (14) and (19) did not converge when a 
small fixed number of grid points was used in the calculations, and, in some cases, numerical 
instabilities were also observed. The reason for the lack of convergence and for instabilities was 
ill-conditioned and stiff matrices, i.e. the Jacobian of the non-linear algebraic equations was such 
that the ratio of its largest to its smallest eigenvalue was, in absolute value, much larger than one. 
This was found to be a consequence of the very disparate finite element sizes which result when a 
fixed number of grid points is used in the calculations. 

In order to ensure the convergence of the Newton method and avoid ill-conditioned systems, 
the sub-equidistribution technique defined by equation (17) was used in the calculations as 
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follows. Equations (14) and (19) were first solved. If after a certain number (50) of iterations the 
Newton method did not converge, or if it converged but violated equation (17), grid points were 
added or deleted. Equations (14) and (19) were then solved in the new grid and the procedure was 
repeated until convergence was achieved and equation (17) was satisfied. 

Owing to the iterative character of the Newton method and the sub-equidistribution technique 
employed in the calculations, the elliptic grid generation method presented in this subsection 
required much longer computational times than the static rezoning procedure described in the 
previous subsection. 

The main advantage of the elliptic grid generation method is that the grid motion (equation (14)) 
and the solution of the reaction-diffusion equations (equation (19)) are coupled at each time step; 
therefore the grid adaptively follows the largest temperature gradients. However, the grid motion 
may result in finite element of disparate sizes, ill-conditioned matrices and non-convergence of the 
Newton method if a fixed number of finite elements is used in the calculations. These problems can 
be reduced somewhat by using a sub-equidistribution technique to ensure grid smoothness. 

Note that equation (14) contains a smoothness parameter A,; however, calculations with a fixed 
number of grid points and 0.5 <As< 10 indicated that sub-equidistribution was still necessary in 
order to achieve convergence and/or accurate results. 

In the next subsection we develop a hybrid adaptive method which uses the grid distribution 
provided by equation (14) but decouples the solution of equations (14) and (19). 

Hybrid method 

In static rezoning techniques the grid points may remain fixed for intervals of time, whereas in 
elliptic grid generation methods the solution of the partial differential equations and the grid 
motion are fully coupled at  each time step. Hybrid methods are intermediate between static and 
fully dynamic adaptive procedures. 

In this subsection we describe a hybrid method which combines the advantages of the 
equidistribution and elliptic grid generation techniques presented in the previous subsections. For 
the sake of convenience our discussion will be limited for calculations starting at t = 0. At t = 0 we 
know the initial values of U and w; therefore equation (14) can be solved to obtain a grid. This grid 
must satisfy the sub-equidistribution equation (1 7); wherever equation (1 7) is violated, grid points 
are inserted or deleted and equation (14) is solved in the new grid. This procedure is repeated as 
many times as necessary until equation (17) is satisfied. Thegrid thus determined at t = O  is used to 
solve equation (7) and advance the solution from t = O  to t = At,  where At is the time step. The 
solution at At is then used to calculate a new grid at  this time level by solving equation (14) subject 
to equation (17). 

From the previous discussion it can be concluded that in hybrid methods the nodal locations 
lag the solution of the partial differential equations, i.e. the grid motion and the solution of the 
governing equations are not coupled at each time step; rather, the solution at the previous time is 
used to calculate the new nodal locations. 

This lag may result in severe inaccuracies if the flame speed and/or the time step are large, but 
can be reduced by reducing the time step. Furthermore, since the nodes occupy different positions 
at different times, interpolation is necessary. This interpolation must be performed so as to 
preserve the monotonicity and positivity of the solution and conservation of mass (species) and 
energy. Otherwise, oscillatory solutions may be obtained and/or the interpolated solution may 
violate mass and energy conservation. In the calculations presented here we have used cubic 
splines for the interpolation. 
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Presentation of results 

Figures 1 and 2 show the temperature and species mass fraction profiles at selected times, while 
the locations of some of the grid points used in the calculations are presented in Figure 3. Figures 
1-3 were obtained with the elliptic grid generation technique and the number of grid points varied 
from 15 to 25. Verwer et aL3 solved equation (7) by means of a predictorxorrector hybrid finite 
difference method and used between 10 and 17 grid points, a variable time step and a weighting 
function proportional to the square root of the absolute value of the second derivative of the 
temperature. 

The predictor step of the method used by Verwer et aL3 is identical to the hybrid method 
described in this paper. Their corrector step uses the results of our hybrid method to calculate the 
new grid at t = A t ,  which is then employed to solve equation (19). 

The results of the static rezoning and hybrid methods are almost identical to those presented in 
Figures 1-3; however, the computational times are vastly different. The static rezoning, hybrid and 
elliptic grid generation methods used the same time step and required 41,69 and 218 min of CPU 
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Figure 1. Temperature profiles 

0 0.5 X 

Figure 2. Mass fraction profiles 
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Figure 3. Grid point locations 

time on a VAX 11/780 computer. The differences in computer times are due to the solution of the 
elliptic grid generation method and to the non-linear coupling between the grid motion and the 
solution of the partial differential equations in the elliptic grid generation procedure. 

CONVECTION-REACTION-DIFFUSION EQUATIONS 

In this section we consider the following non-dimensional linear convection-reaction-diffusion 
24 

(22)  
1 

Ti +- T, = - T,, - PT, Pe 
0 < x < 00, t > 0, 

subject 
aT 

T(x, 0) = - (00, t )=O,  ax 
T(0, t) = exp (- Pt), (24) 

where Pe is the Peclet number and f i  is a constant. 

obtainable by means of the Laplace transform:24 
Equation (22)  is a model equation which, for Pe=  00, has the following analytical solution 

T(x,t) = e-@'H(t - x), (25) 

where H ( q )  is the Heaviside step function, i.e. H = 1 for q > 0 and H = 0 for q < 0. 

subsections. 
Equation (22) was solved by means of the finite element methods described in the next 

Characteristic jinite element method 

and reaction4ffusion operators: 
Equation (22)  can be written in operator-splitting form as the following sequence of convection 

L,: T, + T, = 0, (26) 
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The solution of equation (26) can be obtained exactly by means of the method of characteristics 
to yield T= constant along the characteristic line 

dxldt = 1. (28) 

X = X" + Af, (29) 

Equation (28) can be integrated to yield 

where A t  denotes the time step used to solve the convection operator, X" denotes the co-ordinate at 
t" and X denotes the co-ordinate which results from the convection operator. The value of X does 
not, in general, coincide with the location of the fixed grid points used to solve the 
reaction-diffusion operator. Therefore the temperature value from the convection operator must 
be interpolated onto the fixed grid of the reaction-diffusion operator which was solved by means 
of a Galerkin linear finite element method. 

Since equation (26) and (27) are based on the method of characteristics and fixed grids for the 
reaction-diffusion operator, the resulting technique may be referred to as characteristic-Eulerian 
or Lagrangian-Eulerian method. Note that the advantage of characteristic finite element methods 
is the elimination of the convection term. However, numerical diffusion cannot be eliminated 
entirely because of the interpolation required to project the results of the convection operator onto 
the Eulerian grid of the reaction-diffusion operator. 

Petrou-Galerkin jinite element method 

introduces upwinding by biasing upstream influence relative to the flow direction. 

can be written as14* l S  (Figure 4) 

Equation (22) was also solved by means of a Petrov-Galerkin finite element method which 

We have used trial functions 4i which are piecewise linear, whereas the test or weight functions 

(30) 

(31) 

w1 = 41 + .F,(5), w2 = 42 - aF1(5)7 

F ( 5 )  = - 3(t2 - 51, 5 = (X - x i ) / ( x i +  1 - x i ) ,  X i <  X < X i +  1 ,  

and the value of a was selected so as to avoid oscillatory solutions. 
With the upstream-weighted functions given by equation (30) and a proper choice of a, the 

solution of equation (22) does not exhibit oscillations but is smoothed out because of the 
numerical dissipation introduced by upwinding. Damping is particularly severe when the flow has 
steep gradients, e.g. for Pe= co. 

FCTfinite element method 

Flux-corrected transport (FCT) techniques are monotone positivity-preserving methods which 
reduce the amount of numerical dissipation introduced by Petrov-Galerkin finite element 
methods and involve the following (1) calculate the convection fluxes by a low-order 

FLOW 

i-? i i+j i-I i i4 1 

Figure 4. Upstream weight functions 
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monotone algorithm; (2) calculate the fluxes by a high-order method: (3) calculate the antidiffusion 
flux as the difference between the fluxes computed in steps 1 and 2; (4) calculate the low-order 
transported and diffused solution; (5) bound the magnitude of the antidiffusion flux so that the 
solution of step 6 is free of overshoots and undershoots; (6) use the limited antidiffusion fluxes to 
obtain a new solution. 

In the calculations presented in this paper, equation (22) was operator-split as in equations (26) 
and (27). Equation (27) was solved by means of a Galerkin linear finite element method, while 
equation (26) was solved by means of the FCT technique as follows. Equation (26) can be written 
using Taylor series expansions as 

where T* denotes the solution of the convection operator. Applying linear (Taylor-Galerkin) 
finite element methods, equation (32) can be written as2' 

MAT* = R, AT* = T* - T", (33) 

where M is the mass matrix, T* is the vector of nodal amplitudes and R denotes the corresponding 
right-hand-side terms. 

A low-order solution of equation (33) can be obtained by solving the equation 

MLAT' = R + A, (34) 

where ML is the lumped mass matrix, A is a vector of artificial viscosity and T' denotes the low- 
order diffused solution. The vector A can be written as 

A = c,(M - MJT", (35) 

where cd is a diffusion coefficient. 
The antidiffusive step can be written as the difference between equation (33) and (35), i.e. 

ML(AT* - AT') = (ML - M)AT* - A, 

AT* - AT' = ML' (ML - M)(AT* + c~T") .  

(36) 

(37) 

which can be expressed as 

The right-hand-side of equation (36) has to be limited so as to avoid overshoots and 
undershoots in equation (37). 

For all the finite element methods presented in this section, the semi-finite domain Odx < co 
was truncated to O d x < L ,  and the computations were performed up to a time such that the 
temperature profiles are not affected by the value of L. 

Presentation of results 

Figures 5-7 show the value of T as a function of x at t = 1, and for p = 1, L = 2 and Pe = 03,0.25 
and 0.01 respectively. In these figures A, C-FEM, P-G and FCT denote the analytical solution and 
the characteristic, Petrov-Galerkin and flux-corrected transport finite element methods respect- 
ively. 

Figure 5 indicates that the C-FEM yields overshoots and undershoots in the neighbourhood of 
the temperature discontinuity. These overshoots and undershoots are due to the interpolation of 
the solution of the characteristic (Lagrangian) solution of the convection operator onto the fixed 
(Eulerian) grid of the reactiondiffusion operator. Such an interpolation was performed with cubic 
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Figure 5. Temperature profiles for Pe = co 
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Figure 6. Temperature profiles for Pe=0.25 

splines. Calculations were also performed by means of linear and quadratic interpolation and 
yielded similar overshoots and undershoots to those shown in Figure 5. 

Figure 5 also indicates that the P-G and FCT finite element methods yield non-oscillatory 
solutions. However, the P-G method predicts a smoother (more diffused) temperature profile than 
the FCT technique. The FCT finite element method predicts a steep discontinuity except near the 
corners where some diffusion can be observed. 

Figures 6 and 7 indicate that the smoothing of the temperature profile decreases and that the 
agreement between the analytical and numerical solutions improves as the Peclet number is 
decreased. Both Figures 6 and 7 indicate that the FCT finite element method is more accurate and 
predicts a steeper temperature profile than the C-FEM and P-G techniques. This higher accuracy 
is due to the reduction to the numerical diffusion in the antidiffusive step of the FCT algorithm. 
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Figure 7. Temperature profiles for Pe=0.01 

Figures 6 and 7 also indicate that the C-FEM method slightly overpredicts the location of the 
flame front and that the temperature profiles show overshoots and undershoots for Pe  = 0.25 but 
not for Pe=0-01. The overprediction of the flame front location and the overshoots and 
undershoots seem to be a consequence of the interpolation of the solution of the convection 
operator onto the Eulerian grid used to solve the reaction-diffusion operator. 

CONCLUSIONS 

Adaptive static rezoning, elliptic grid generation and hybrid techniques have been used to study 
the propagation of a one-dimensional laminar flame in Cartesian co-ordinates. The static 
rezoning method equidistributes the arc length of the temperature and is based on a variational 
formulation which does not include grid smoothness. The elliptic grid generation technique uses 
grid smoothness and grid equidistribution and is based on the minimization of a functional whose 
Euler-Lagrange equation is a two-point non-linear elliptic equation for the grid motion. The 
elliptic grid generation method couples the solution of the grid motion and the solution of the 
partial differential equations at each time step, and results in a system of non-linear algebraic 
equations which were solved by means of a damped Newton method. 

It was found that the system of algebraic equations was, in some cases, ill-conditioned and that 
the Newton method did not converge unless the sizes of adjacent finite elements were bounded 
from above and below, i.e. it did not converge unless the grid was sub-equidistributed. 

The hybrid method is intermediate between the static rezoning procedures whose grid points 
remain fixed for intervals of times, and elliptic grid generation techniques where the grid motion 
and the solution of the partial differential equations are fully coupled at each time step. 

The hybrid method presented in this paper is of the predictor type, in that a known solution is 
used to calculate the grid at a new time level. Therefore, there is a lag between the grid motion and 
the solution of the partial differential equations. This lag may yield inaccurate results if the time 
step and/or the flame speed are large, and can be reduced by reducing the time step. 

It was shown that static rezoning, elliptic grid generation and hybrid methods require mesh sub- 
equidistribution strategies in order to avoid ill-conditioned matrices and adjacent elements of 
quite different sizes. These methods resulted in almost undistinguishable results when applied to a 
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system of reaction4iffusion equations. However, the elliptic grid generation and hybrid methods 
required approximately 5.30 and 1.68 longer computer times than the static rezoning technique. 
These differences in computer times are due to the solution of the non-linear elliptic equation 
which governs the grid motion and to the mesh sub-equidistribution strategy employed in the 
calculations. 

Characteristic, flux-corrected transport and Petrov-Galerkin finite element methods were also 
used to study a linear convection-diffusion-reaction equation which has an analytical solution. It 
was found that Petrov-Galerkin methods yield smoother temperature profiles near steep fronts 
than the flux-corrected transport and characteristic finite element techniques. This smoothing or 
numerical diffusion was caused by the use of upstream weight functions, and decreases as the 
Peclet number is decreased, i.e. as the flow becomes less convection-dominated. 

The monotone and positivity-preserving flux-corrected transport finite element method yielded 
steep flame fronts in very good agreement with the analytical solution, except upstream and 
downstream of the temperature discontinuity for an infinite value of the Peclet number. 

Both the flux-corrected transport and the characteristic finite element techniques split the 
convection4iffusion-reaction operator into a sequence of convection and reaction4iffusion 
operators. The characteristic finite element technique solves the convection operator exactly by 
means of the method of characteristics, but results in overshoots and undershoots at the flame 
front due to the interpolation of the results of the convection operator onto the fixed (Eulerian) 
grid used to solve the reaction4iffusion operator. The characteristic or Lagrangian-Eulerian 
finite element method also yields some numerical diffusion due to the interpolation. It can be 
concluded that very accurate solutions of convection-dominated flows can be obtained by means 
of flux-corrected transport finite element methods which limit the amount of antidiffusion. 
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